APPLICATION OF A VARIATIONAL METHOD FOR THE
SOLUTION OF NONSTATIONARY HEAT CONDUCTION PROBLEMS
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We present an application of a variational principle due to Ainola, compatible with Kantoro-
vich's method, for the solution of the first and second boundary value problems.

The majority of papers on variational methods for the solution of nonstationary heat conduction prob-
lems involve the use of Biot's integrodifferential principle [1], although the approximations obtained thereby
are somewhat involved owing to the absence in these methods of explicit physical bases, (see [2]). We
assume here that this deficiency is eliminated in Ainola's variational principle, formulated for simultaneous

_application with the method of Ritz in [3]. Our aim here is to show that it is possible to apply Ainola's
variational principle, along with Kantorovich's method, to obtain approximate analytic solutions of one-
dimensional nonhomogeneous heat conduction equations with boundary conditions of the first and second
kinds. Ainola's principle is formulated here in a form suitable for practical application; in particular,
the functional is composed starting from the heat conduction equation.

Let it be required to solve the heat conduction equation
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where ¢(x), f;(1), and fy(r) are continuous functions satisfying, for boundary conditions of the first kind,
the compatibility conditions
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or, fof boundary conditions of the second kind
o' @ =10, ¢ =F0). (41D
Introducing a new unknown function u(x, 7) such that
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*Relations referring to boundary conditions of the first or second kinds, respectively, are numbered with a
subscript 1 or 2; relations without such subscripts apply to both types of boundary conditions.
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recpectively, for boundary conditions of the first and second kinds, we reduce the problems defined by
Eqs. (1), {3p) and (1), 3y to the zero initial and boundary conditions
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W(a, =0, (b =0 0. (3f1)

In Eq. (1') the quantity f(x, 7}, for the boundary conditions (31} of the first kind, is given by
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and, for the boundary conditions of the second kind, (31y), by
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As was done in [3], we integrate the first two terms of (1') by parts, and, using the symmetry property
of the kernel, we confirm the validity of the following statement: if u(x, 7) is a solution of Eq. (1') for
0 < 1 < t, satisfying the conditions (2'), (3{_—) or the conditions (2'), (3&1), then the functional

b
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x"‘ Ox ot

]
has a stationary solution since its variation 6I= 0

In accordance with Kantorovich's method [4] we write the first approximation to the solution of Eq.
(7) in the form

u(x, 7 =gx) (1), (8)

where g(x) is a known function of the coordinates, satisfying the conditions g(a) = g{) = 0 for boundary
conditions of the first kind and the conditions g!(a) = g* (b) = 0 for boundary conditions of the second kind,
and () is an unknown function such that (0) = 0, We note here that the functions g(x) for the first and
succeeding approximations, besides satisfying the homogeneous boundary conditions of the problem and
the completeness conditions, must be continuous and differentiable in the domain being studied. The speci-
fic form of the functions g(x) is justified and presented, for example, in [5].

Substituting the expression (8) into the functional (7) and integrating with respect to x, we obtain
{= \ [ (1) + BY' (1) —2C ()] ¢ (t — 1) dr, (7

where

b
A= [ (9 g (91 g (9,

b

B = Scp (x) x"g* (x) dx,

b
Cr)= ( f(x, ©) g (x) x™dx.
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It is easy to show that for the functional (7') the stationary condition (Euler equation) is

A () — By’ (1) — C (1) = 0. (9)

Solving this equation, for example, with the aid of the Laplace integral transform and the condition (0)
= 0, we determine ¥(r) and, consequently, also the solution of the problem (1), (3'1) or the problem (1),
(B'H). The succeeding approximations are obtained in an analogous way.

By way of illustrating the above, we consider the temperature field in homogeneous bodies of the
simplest geometrical shape (plate, cylinder, sphere) without heat sources under constant symmetrical
boundary conditions and a constant initial condition.

In this case the boundary value problems (1), (3p and (1), (3H) have the form
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supplemented by the symmetry condition
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To satisfy the compatibility condition (41) we put
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and to satisfy the condition (417
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where 1_'0 is a sufficiently small positive number. The physical meaning of this is that we presuppose

the existence of a transition process of duration ;0 in the course of which the initial temperature T, on the
surface of the body varies continuously up to the temperature Ty, of the surrounding medium (for boundary
conditions of the first kind) or, in the exterior layers of the body, a temperature profile is formed whose
derivative at the wall is equal to q(f,/2) (for boundary conditions of the second kind). These assumptions
are in accord with the actual occurrence of nonstationary heat conduction processes.

We first introduce, in accord with Eq. (57), u(n, 7) as follows:

T 9= 9+ L@ (59
and, in accord with Eq. 511),
O AT 5y

Then, for the first boundary value problem, the functional (7) takes on the form
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and, for the other problem,
17
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If, following the expression (8), we put u(m, V= (L= ng)z{)(ﬂ?) for the first boundary value problem and —u{zy,
) zb('r) for the second, and carry out the integrations in Eqgs. (71) and (711) with respect to 7, we obtain
functionals with the respective Euler equations
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Solving Egs. (L1y) and (11yp) for #(7) and using the condition #(0) = 0, we obtain, as 7, 0, the solution of
the first boundary value problem

T H—Ty m+35

. (m 1) (m -+ 5)
- — —q? S S
00, ) =~ — (1= )exp[ . T (12p)
and the solution of the second boundary value problem
= T o—~T, , = mtl—(mi3)n’
L
where the solution (12]y) agrees in full with the quasistationary part of the exact solution given in [6].
We seek second approximations u(n, ;) in the respective forms
w(n, D= (1 — ) (D (1 — 19 'y (1), (13p
= = n? nt -
atn D =4 + (L~ ) sm)

and, omitting for lack of space, the systems of Euler equations for the determination of zp1 (-r) and ng('r),
we give, for the sake of comparison with the solutions in [6], only the magnitudes of ¢ as 7, — 0.

For the first boundary value problem we write the second approximation to the solution ag follows:
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For the second boundary value problem we have, in the second approximation, as ;0 ~Q,
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We note that the quantities ¢y and o, are practically coincident with the squares of the first and second
characteristic numbers for the first boundary value problem of heat conduction, while the quantity vy coin-
cides with the square of the first characteristic number for the second boundary value problem.

The solution of the first boundary value problem for the particular case in which A = A(1 + vi?), cp
=c¢opp(d + xm, and g, (M, T) = dyexp (—k7), is, in the first approximation as 1, —~ 0, as follows:
- 1= — O exp(—p1)—exp(—Pd. )

where

M = 2L+ 2)(m 4 4) (m + 6) 4 (m - 1) (m 4 3) (m - 5) %]
(m + 1) (m 4 2) (m + 3) (m -+ 4) (m + 5) (m - 6) ’

N — (m-4-2y(m-+4)--(m-+-1)(m-+3)% Lm =5 (m A 3)v
m-Dom—-m3mry = mrdmroM
93 _ kG
Po=—29 ___, Pd=_"2.
° }"O(TO - Tc) ag,

The error of the method considered here is determined by comparing the quantities ¢ for the second
approximation with the exact values 6g, given in [6] for various 7 = idem and n = idem. For the homo-
geneous first boundary value problem an analysis of the function 6 as to monotonicity in the region |5l < 0,5,
along with calculations on an electronic digital computer, show that there is good agreement between 6
and g in the region

- ! {gmg+m@—mm—m+%w+%my

T>
Gy — Oy %y (38 —m) (o, —B) + oy (m - 9) ?

For In| = 0.5 the difference between 0 and e is less than 5% for 7 = 0.05.

Calculations carried out on the M-220 electronic digital computer confirm that the quantities 6 for
the second boundary value problem differ from the corresponding 6, by less than 5% for 7 = 0.03 for ||
= 0.5, and for 7 = 0.1 for |5 | = 0.5.

NOTATION
T, 1), Tgy Ty are the insténtaneous, initial temperature of body and ambient temperature;
x,n=x/ly Iy are the dimensional and dimensionless coordinates, characteristic dimensions of

_ body (half thickness of plate, radius of eylinder, and sphere);
T,t, T=ar/1},

t=at/1} are the dimensional and dimensionless time;

a=x/ep, A, Cc,p are the thermal diffusivity, thermal conductivity, heat capacity, and density;
dy &, 7) is the volume power of heat source;

m=0,1,2 are for plate, cylinder, and sphere, respectively;

q ‘ is the heat flux density;

Po = qyl3/ Ay(Ty~Ty) is the Pomerantsev number;

Pd =k} /aq, is the Predvoditelev number.
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