
A P P L I C A T I O N  OF A V A R I A T I O N A L  M E T H O D  F O R  T H E  

S O L U T I O N  O F  N O N S T A T I O N A R Y  H E A T  C O N D U C T I O N  P R O B L E M S  

N.  M.  T s i r e l ' m a n  a n d  D. M. Y a n b u l a t o v  UDC 536.21 

We p re sen t  an appl icat ion of a var ia t iona l  pr inciple  due to Ainola, compat ib le  with Kan to ro-  
v ich ' s  method,  for  the solution of the f i r s t  and second boundary value p rob l ems .  

The ma jo r i t y  Of pape r s  on var ia t iona l  methods  for  the solution of nonsta t ionary heat  conduction p rob -  
l e m s  involve the use of Blo t ' s  in tegrodif ferent ia l  pr inciple  [1], although the approximat ions  obtained thereby 
a r e  somewhat  involved owing to the absence  in these methods of explici t  physica l  b a s e s ,  (see [2]). We 
a s s u m e  he re  that this deficiency is e l iminated in Ainola ' s  var ia t iona l  pr inc ip le ,  formula ted  for  s imultaneous 
appl icat ion with the method of Ritz in [3]. Our a im he re  is to show that it is poss ib le  to apply Ainola ' s  
var ia t iona l  pr inc ip le ,  along with Kantorov ich ' s  method,  to obtain approx imate  analytic solutions of one-  
d imens ional  nonhomogeneous heat  conduction equations with boundary conditions of the f i r s t  and second 
kinds. Ainola ' s  pr inciple  is formula ted  he re  in a fo rm suitable for  p rac t i ca l  application; in pa r t i cu la r ,  
the functional is composed  s t a r t ing  f rom the heat  conduction equation. 

Let  it be requi red  to solve the heat  conduction equation 

! ! [x"*x (x) = c~, (x) + qo (x, r 
X m OX L oT 

a<( x ~ b ,  ~ 0  

m = 0 ,  1, 2, (1) 

subject  to the init ial  condition 

T (x, O) = ~ (x), a ~  x..< b 

and a boundary condition of the f i r s t  kind 

T(a,  w) = f~ (w), 

or  a boundary condition of the second kind 

Orox x=o = fl (% 

(2) 

T (b, ~) = [2 (T), x > 0 (3i) 

OT x=o= [~ (% 
x ~ 0,* (3ii) 

where  (p(x), fl (~'), and f2(T) a r e  continuous functions sa t is fying,  for  boundary conditions of the f i r s t  kind, 
the compat ib i l i ty  conditions 

(a) = f~ (0), 

or ,  for  boundary conditions of the second kind 

~' (a) = f~ (0), 

Introducing a new unknown function u (x, T) such that 

T (x, x) = u (x, x) § qo (x) § [[1 (x) - -  q~ (a)] 

q0 (b) = [~ (0) (4i) 

~'  (b) = [2 (0). (4ii) 

b - - x  x - - a  
+ if2 (~) - -~  (b)] - -  , (5i) 

b - - a  b - - a  

*Relations r e f e r r i n g  to boundary conditions of the f i r s t  o r  second kinds,  r e spec t ive ly ,  a re  numbered  with a 
subsc r ip t  1 o r  2; re la t ions  without such subsc r ip t s  apply to both types of boundary conditions. 
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2 b x  - -  X 2 x 2 -  2ax  
-~ [h (~) - -  q/(b)l  - - - -  T (x, ~) = u (x, , )  + q0 (x) + if1 (~) - -  qY(a)] - -  (51I) 

2 (b - -  a) 2 (b - -  a) 

r e spec t ive ly ,  for  boundary conditions of the f i r s t  and second kinds, we reduce the p rob l ems  defined by 
Eqs. (1) ,  (3I) and (1),  (3ii) to the ze ro  initial  and boundary conditions 

Ou 7 Ou 
1 a x";~(x) ~ x ]  - - c g ( x ) ~ c - - f ( x '  "r) =0, (1') 

X m OX 

u(x, 0 ) = 0 ,  a.-~x.<2b, (2') 

u(a, ~ ) = 0 ,  u(b, ~ ) = 0 ,  ~ > 0 ,  (3 i)  

u' (a, T) = O, u' (b, ~) - 0, r > 0. ( 3 h )  

In Eq. (1') the quantity f(x, T), for  the boundary conditions (3i) of the f i r s t  kind, is given by 

(b - -  x) fl (~) - (x - a) L; (~) 
f (x, r) = q~ (x, ~) + b -  a - -  

(6I) 
i o {x,,,X(x)[ ,(x)! f.,(~)--f~(~) ,,(a)--~(b) ]} 

x m Ox b - -  a 

and, for  the boundary conditions of the second kind, (3ii), by 

fl (~) (2bx - -  x 2) -? f.',_ (r) (x "z - -  2ax) 
f(x, m)--q~(x, QT- 2{b--a)  - -  

(6ii) 
x"'l oxO { x"'X(x) / ' .  [~p (x) q- [ f , (m) - -~ ' (a ) } (b - -x ) ' - l f 2 (~ ) - -m ' (b ) l ( x - -a )2  (b - -  a) [}[ " 

As was done in [3], we in tegra te  the f i r s t  two t e r m s  of (V) by pa r t s ,  and, using the s y m m e t r y  p rope r ty  
of the ke rne l ,  we conf i rm the validi ty of the following s ta tement :  if  u(x, r) is a solution of Eq. (1 T) for  
0 < r < t, sa t is fying the conditions (2'), (3~) or  the conditions (2'), (3ii),' then the functional 

b t 

a 0 

has  a s ta t ionary  solution since i ts  var ia t ion  5I = 0. 

In accordance  with KantorovichTs method [4] we wri te  the f i r s t  approximat ion  to the solution of Eq. 
(7) in the fo rm 

u (x, T) = g (x) !~ (% i8) 
where  g(x) is a known function of the coord ina tes ,  sa t is fying the conditions g(a) = g(b) = 0 for  boundary 
conditions of the f i r s t  kind and the conditions g' (a) = g' (b) = 0 for  boundary conditions of the second kind, 
and r is an unknown function such that ~b(0) = 0. We note he re  that the functions g(x) for  the f i r s t  and 
succeeding approx imat ions ,  bes ides  sa t is fying the homogeneous boundary conditions of the prob lem and 
the comple t eness  condit ions,  m u s t  be continuous and dif ferent iable  in the domain being studied. The sp ec i -  
fie fo rm of the functions g(x) is justif ied and p resen ted ,  for  example ,  in [5]. 

Substituting the express ion  (8) into the functional (7) and in tegra t ing with r e spec t  to x, we obtain 
t 

I = t" [At" (T) -5 B~' (~) - -  2C (~)I ~ (t - -  ~) dr,  (7 ' )  
6 

where  

b 

A = S [x~x (x) g '  (x)l '  g (x) dx, 
a 

b 

B -- ~ cp (x) #Zg~. (x) dx, 
a 

b 

c (9 = ~ f (x, ~) g (x) .v~dx. 
a 
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It is easy  to show that for  the functional (7') the s ta t ionary condition (Euler equation) is 

Ar (~) - -  Br (~) --  C (x) = 0. 

Solving this equation, for  example,  with the aid of the Laplace integral  t r ans fo rm and the condition r 
= 0, we determine  r and, consequently,  also the solution of the problem (1), (3~) or  the problem (1), 
(3{i). The succeeding approximations a re  obtained in an analogous way. 

By way of i l lus t ra t ing the above, we cons ider  the tempera ture  field in homogeneous bodies of the 
s imples t  geomet r i ca l  shape (plate, cy l inder ,  sphere) without heat sources  under constant symmet r i ca l  
boundary conditions and a constant initial condition. 

In this case  the boundary value problems (1), (3i) and (1), (3ii) have the form 

1 0 (' ,. cgT I -  OT 0 < q < l  ~ > 0 ,  

T(0, ~1) = T0, 0 -~ 1] .~ 1, 

T(1, z) = rrn, ~-> 0, 

OTo~I n=l-- ql~163 , ~ > 0  

supplemented by the symmet ry  condition 

aT 
@1 ,l=0 = 0. 

To sat isfy the compatibi l i ty  condition (4 I) we put 

f l ( } ) = T ( •  1, ~) = 

To - -  Tm 

T m , 

- -  ( ~ -  ~0)~ + T m  O,-~z .~%, 

;o-<~ 

and to sat isfy the condition (4ii) 

r ql o 
I aT n=l I s 

:,(~)= -5~- :I 
[ qlo 

qto (.~__ %)2, O:A T ~'co, 
~o 

~0 ..<u 

(9) 

(1") 

(2',) 

(31.) 

(3~i) 

(10) 

where  r o is a sufficiently small  positive number.  The physical  meaning of this is that we presuppose 
the existence of a t ransi t ion p rocess  of duration T 0 in the course  of which the initial t empera tu re  T O on the 
surface  of the body va r i e s  continuously up to the t empera tu re  T m of the surrounding medium (for boundary 
conditions of the f i r s t  kind) or ,  in the ex te r io r  layers  of the body, a t empera tu re  profi le  is formed whose 
der ivat ive  at the wall  is equal to q( /0 / ;q  (for boundary conditions of the second kind). These assumptions 
a re  in accord  with the actual occu r rence  of nonstat ionary heat conduction p roces ses .  

We f i r s t  introduce,  in accord  with Eq. (5i), u@, ~) as follows: 

1-k,~ 
T(~, ~) = u(~, ~} 4- - - Z - -  fl(~) {5~) 

and, in accord with Eq. (5II), 

I] 2 
T m, ;) ~ u (~, 7) + To + ~ -  fl @. 

Then, for  the f i r s t  boundary value problem,  the functional (7) takes on the form 

1 Y 

0 0 

(7',) 
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and, for  the o ther  problem,  

0 0 

If, following the express ion  (8), we put u(~, T) = (1--~)r  for  the f i r s t  boundary value problem and -u0?, 
~) = r for  the second,  and c a r r y  out the integrat ions in Eqs. (7~) and (7~i) with respec t  to ~, we obtain 
functionals wtth the respec t ive  Euler  equations 

) = m+--2-st;6), 
2 4 ( i i I)  

= (m + m + f, 
2 (m + 3) ( l i n )  

Solving Eqs. (11 I} and ( l l i i )  for  r and using the condition r = 0, we obtain, as ~'0 - -  0, the solution of 
the f i r s t  boundary value problem 

0(,1, '~)--T(~I ' ;~-)--Tm= m + 5  ( l_ , ]~)exp[(m+l) (m+5)_]  (12I) 
T o --  T m 4 L J 2  

and the solution of the second boundary value problem 

qlo 2 (m + 3) 
k 

where  the solution (12ii) ag rees  in full with the quas is ta t ionary  par t  of the exact  solution given in [6]. 

We seek second approximations u(~, ~-) in the respect ive  forms  

and, omitting for  lack of space,  

(12ii) 

(13i) 

(13ii) 

the sys tems  of Euler  equations for  the determinat ion of ~l(~') and $2{~-), 
we give, for  the sake of compar i son  with the solutions in [6], only the magnitudes of 0 as ~0 -" 0. 

F o r  the f i r s t  boundary value problem we wri te  the second approximation to the solution as follows: 

where  

0 = (m + 7) (1 --  ~) {i(~ --  %) (3 - -  m) - -  
16! (m + 3) (m + 7) (m e+10m4-57)  

- -  (m -I- 9) czl~l~I exp (-- ai~ ) + [% (m ,J- 9) ~f - -  (3 - -  m) (6 - -  %)] exp (--c%~)}, 

(141) 

For  the second boundary value problem we have,  in the second approximation,  as T0 ~ 0, 

w h e r e  

0 = ( m + l ) - ~ +  ( m + 3 ) ~ l ~ - - m - - I  +[(mq- 1 ) ( m + 7 ) - -  
2 (m + 3) 

m + 9  
--  2 (m -I 3) (m -i- 5) ~]2 -- (m + 3) (m J- 5) ~ltJ 4 (m + 3) (-Sin + 27) exp (-- 7~), 

(14) 

7 = 
2 (m + 3) (m + 5) (m - 9) 

5m + 27 
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We note that the quantit ies a 1 and o~ 2 a r e  p rac t ica l ly  coincident with the squares  of the f i r s t  and second 
c h a r a c t e r i s t i c  numbers  for  the f i r s t  boundary value p rob lem of heat  conduction, while the quantity T coin-  
c ides  with the square  of the f i r s t  cha rac t e r i s t i c  number  for  the second boundary value p rob lem.  

The solution of the f i r s t  boundary value p rob lem for  the pa r t i cu l a r  case  in which h = ho(1 + v~2), cp 
= CoPo(1 + • and qv(~, T) = qoexp (--kT), i s ,  in the f i r s t  approximat ion  as T 0 --- 0, as follows: 

o (~, -~) = 1 - ~~ ] 2M iN exp (--  ~ )  + Po exp (--  ~ )  - -  exp (--Pd.~) 

where  

M -~ 2 [(m + 2) (m + 4) (m -~- 6) -~- (m + 1) (m + 3) (m + 5))~1 . 
(m -v-1) (m + 2) (m + 3) (m -? 4) (m E- 5) (m -I- 6) 

I 
-v- , 1 ~ ~ ; N = (m -~- 2) (m + 4) "- (m 1) (m -I- 3) :t m -}- 5 + (m -~- 3) v 

(m ~- 1) (m -+- 2) (m -~-- 3) (m + 4) (m -~- 3) (m + 5)M 

Pc q~176 Pd : kl2 

~0(T0 - -  Tc) ' aq ~ 

The e r r o r  of the method cons idered  he re  is  de te rmined  b y c o m p a r i n g  the quanti t ies  0 for  the second 
approx imat ion  with the exact  values  0e, given in [6] for  var ious  T = idem and ~ = idem. F o r  the homo-  
geneous f i r s t  boundary value p rob lem an ana lys i s  of the function 0 as  to monotonici ty in the region I~?l < 0.5, 
along with ca lcula t ions  on an e lec t ronic  digital  compute r ,  show that there  is good a g r e e m e n t  between 0 
and 0 e in the region 

~-> 1 [ 3 1 n  a2 -I-In (3--m)(~z2--[~)+a~(m+9)~]~ ] .  
~., - -  ~1 L 2 ~1 (3 - m) (al  - 8) + % (m + 9) ~1 ~ J 

F o r  I~? I >- 0.5 the d i f ference  between 0 and 0e is l e s s  than 5% for  7r _> 0.05. 

Calculat ions c a r r i e d  out on the M-220 e lec t ronic  digital  compute r  conf i rm that the quanti t ies  0 for  
the second boundary value p rob lem di f fer  f rom the cor responding  0 e by less  than 5% for  T _> 0.03 for  I~ I 
-> 0.5, and for  T -> 0.1 for  [~? I --< 0.5. 

T(x, r ) ,  To, T m 
x ,  ~? = x / l  o, l o 

T ,  t ,  T = a 7  / l ~ ,  
"~ = a t  / l 2 

a = ~ / c p ,  ~,  c ,  p 

qv(X, "r) 
m = 0, 1, 2 
q 
Pc = q0/2 / ~o(To - T m) 
Pd kl 2 / aq 0 

N O T A T I O N  

a re  the ins tantaneous ,  initial  t e m p e r a t u r e  of body and ambient  t empera tu re ;  
a re  the d imens ional  and d imens ion less  coord ina tes ,  c h a r a c t e r i s t i c  d imensions  of 
body (half th ickness  of pla te ,  radius  of cy l inder ,  and sphere) ;  

a r e  the d imens iona l  and d imens ion less  t ime;  
a r e  the t he rm a l  diffusivi ty,  t he rma l  conductivity,  heat  capaci ty ,  and density;  
is  the volume power  of heat  source;  
a r e  for  plate ,  cy l inder ,  and sphere ,  respec t ive ly ;  
is the heat  flux density;  
is the P o m e r a n t s e v  number ;  
is the Predvodi te lev  number.  
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